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Abstract We present a streamline diffusion shock capturing spacetime discontinuous
Galerkin (DG) method to approximate nonlinear systems of conservation laws in sev-
eral space dimensions. The degrees of freedom are in terms of the entropy variables
and the numerical flux functions are the entropy stable finite volume fluxes. We show
entropy stability of the (formally) arbitrarily high order accurate method for a general
system of conservation laws. Furthermore, we prove that the approximate solutions
converge to the entropy measure valued solutions for nonlinear systems of conser-
vation laws. Convergence to entropy solutions for scalar conservation laws and for
linear symmetrizable systems is also shown. Numerical experiments are presented to
illustrate the robustness of the proposed schemes.
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1 Introduction

Many interesting problems in Physics and Engineering are modeled in terms of non-
linear partial differential equations termed as systems of conservation laws:
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104 A. Hiltebrand, S. Mishra

Ut +
d∑

k=1

Fk(U)xk = 0, (x, t) ∈ � × R+, (1.1)

Here, � ⊂ R
d(d = 1, 2, 3) is a bounded spatial domain and U : � �→ R

m is the vector
of unknowns. Fk is the (smooth) flux vector in the k-th direction. The conservation law
(1.1) is equipped with suitable initial and boundary conditions. Examples for systems
of conservation laws include the Euler equations of gas dynamics, the shallow water
equations of oceanography, the magnetohydrodynamics (MHD) equations of plasma
physics and equations of nonlinear elasticity [6].

1.1 The continuous problem

The system of conservation laws (1.1) is termed hyperbolic if the directional Jacobians∑d
k=1 ∂UFkνk , have real eigenvalues for every normal direction ν. It is well known

that solutions of hyperbolic conservation laws contain discontinuities known as shock
waves, even when the initial data is smooth. Thus, solutions of (1.1) are sought in the
weak sense i.e, for every compactly supported test function ϕ ∈ (C∞

c (�×R+))m, U ∈
(L1(�×R+))m is said to be a weak solution of (1.1) if the following integral identity
is satisfied:

∫

R+

∫

�

(
〈U,ϕt 〉 +

k∑

d=1

〈Fk(U),ϕxk
〉
)

dxdt +
∫

�

〈U(x, 0),ϕ(x, 0)〉dx = 0. (1.2)

Here, we have implicitly ignored boundary conditions by considering test func-
tions that are compactly supported in the spatial domain �. Weak solutions are not
necessarily unique. Additional admissibility criteria or entropy conditions need to be
imposed in order to single out the physically relevant solutions of (1.1). We assume
that there exists a strictly convex entropy function S and entropy flux functions Qk

such that the following compatibility conditions are satisfied,

∂U Qk = 〈V, ∂UFk〉, ∀k = 1, 2, · · · , d. (1.3)

Here, V = ∂US is termed as the vector of entropy variables. The weak solution U of
(1.1) is said to be the entropy solution [6] if it satisfies the entropy inequality,

St +
d∑

k=1

Qk
xk

≤ 0, (1.4)

in the sense of distributions.
Integrating the entropy inequality (1.4) in space results in the estimate,

d

dt

∫

�

S(U(x, t))dx ≤ 0. (1.5)
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Entropy stable space–time DG schemes 105

This bound on the total entropy, together with the strict convexity of the entropy
function, yields an L2 stability estimate for the entropy solution U [6]. This ”energy”
estimate is currently the only available generic global a priori estimate for systems of
conservation laws [6]. Furthermore, the entropy inequality incorporates appropriate
small scale information such as vanishing diffusion, resistivity, etc [6].

1.2 Numerical schemes

Numerical schemes serve as one of the key tools in the study of systems of conservation
laws. Finite volume schemes [23] that update the cell averages of the solution in terms
of the numerical fluxes (obtained by the exact or approximate solutions of Riemann
problems at cell interfaces) are one of the most popular design frameworks for robust
numerical schemes. Higher-order spatial accuracy is obtained from a non-oscillatory
piecewise polynomial reconstruction in each cell. Reconstruction procedures such
as the second-order TVD [23], ENO [14] and WENO [25] are typically employed.
Higher order temporal accuracy results from strong stability preserving (SSP) Runge–
Kutta (RK) time integrators. An alternative to high-order finite volume methods is
the discontinuous Galerkin finite element method [4,5]. At lowest (first) order, these
methods reduce to the standard finite volume method. However, high-order accuracy
is obtained by using piecewise polynomial test functions in each element. Limiters are
employed to damp oscillations near shocks. Temporal accuracy is again increased by
using SSP RK methods. High-order finite volume methods and RKDG methods have
been very successful in carrying out realistic large scale simulations of conservation
laws [26].

However, the rigorous analysis of numerical methods for systems of conservation
laws is far from being complete. It is essential to remark that most of the rigor-
ous numerical analysis results have been obtained for scalar conservation laws [13].
For these equations, the continuous problem is well-posed as the solution is TVD
and satisfies an infinite number of entropy inequalities. First-order monotone finite
volume schemes and second-order TVD limiter based schemes are shown to con-
verge to entropy solution [13]. However, no rigorous global stability results are avail-
able for the ENO and WENO schemes, even for one-dimensional scalar conservation
laws. Second-order TVD limiter based and arbitrary order TVB limiter based RKDG
schemes are also shown to converge [5] for scalar problems. It is also possible to obtain
rigorous convergence results for linear symmetrizable systems [11].

As global estimates on the total variation are not available for solutions of systems
of conservation laws, the entropy estimate (1.5) and the resulting L2 bound serve as the
only available a priori estimates on the entropy solution. Therefore, we seek entropy
stable schemes i.e, numerical schemes approximating (1.1) that satisfy a discrete ver-
sion of the entropy inequality (1.4) and the resulting entropy estimate (1.5).

1.3 Entropy stable numerical schemes

The first entropy stable schemes for systems of conservation laws were introduced
by Tadmor in [27,28]. These first order finite volume (finite difference) schemes are
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based on judicious combination of entropy conservative fluxes and numerical diffusion
operators. Arbitrary order entropy stable schemes (TeCNO schemes) for systems of
conservation laws, based on high order entropy conservative fluxes [22] and ENO based
numerical diffusion operators has been proposed very recently in [10,11]. However,
these schemes, being finite difference schemes, are restricted to structured grids in
several space dimensions. Furthermore, only the semi-discrete version of TeCNO
schemes has been shown to be entropy stable so far.

In contrast to finite volume schemes, the theme of entropy stable finite element
methods has been investigated more widely. In [17], the authors proposed a streamline
diffusion based entropy stable spacetime finite element method. Similar spacetime
streamline diffusion finite element methods for scalar conservation laws were proposed
in [20,21] and a combined streamline diffusion and discontinuous Galerkin (DG)
method for scalar conservation laws was proposed in [19]. More recently, entropy
stable streamline diffusion and DG methods for systems of conservation laws were
proposed by Barth in [1]. The major advantage of spacetime finite element methods is
the fact that they are readily available for unstructured grids, unlike high-order ENO
based finite volume methods. Furthermore, the spacetime formulation leads to entropy
stability for fully discrete schemes.

1.4 Convergence to measure valued solutions

Entropy stability is an essential requirement for the design of efficient numerical
schemes. However, it is not enough to conclude any sort of convergence result for the
approximate solutions, generated by the entropy stable numerical scheme. Given the
extreme difficulties of trying to prove wellposedness of weak solutions for nonlinear
systems in several space dimensions and the corresponding difficulties in showing
convergence of weak solutions for these equations, it might be necessary to weaken
the notion of solutions even further.

To this end, we consider entropy measure valued solutions introduced by DiPerna
in [7]. This concept of solutions is defined as,

Definition 1.1 (Measure valued solutions) Assuming that the conservation law (1.1)
is equipped with an entropy formulation, a probability (non-negative with unit mass)
measure μ, realized as a map:

μ : (x, t) ∈ � × R+ �→ Prob(Rm),

for each x, t is a defined as a measure valued solution of the system (1.1) if it satisfies,

∫

�

∫

R+

(
〈〈U,μx,t 〉,ϕt 〉 +

d∑

k=1

〈〈Fk,μx,t 〉,ϕxk
〉
)

dxdt = 0, (1.6)

for all test functions ϕ ∈ (C∞
c (� × (0,∞)))m . Here,

〈g,μx,t 〉 =
∫

Rm

g(λ)dμx,t (λ).
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Note that we realize the Young measure in terms of the entropy variables V. The
corresponding Young measure for the conservative variables U can be realized as
U(μ), using the one-one mapping U(V).

Furthermore, as the system (1.1) is equipped with an entropy function S and entropy
flux functions Qk for k = 1, 2, · · · , d, then μ is defined to be an entropy measure
valued solution of (1.1) if it is a measure valued solution as well as it satisfies,

∫

�

∫

R+

(
〈S,μx,t 〉ϕt +

d∑

k=1

〈Qk,μx,t 〉ϕxk

)
dxdt ≥ 0, (1.7)

for all non-negative test functions 0 ≤ ϕ ∈ C∞
c (� × (0,∞))

It is well known that measure valued solutions reduce to the standard notion of weak
solutions of (1.1) if μ = δV(x,t) [7]. However, measure valued solutions are more
general than weak solutions and contain information about the oscillatory structure of
the solution. Given the extreme difficulty of proving convergence to a weak solution,
a more reasonable (and weaker) requirement would be to show convergence of a
numerical method to the entropy measure valued solutions of systems of conservation
laws. This is a key consistency criterion for the numerical schemes. Furthermore,
in recent years, Glimm et al [12] have hypothesized that measure valued solutions
are the appropriate notion of solutions for systems of conservation laws in several
space dimensions. Several numerical examples [12] show that there is no pointwise
convergence of numerical schemes as the mesh is refined. On the other hand, there
is convergence of interesting functionals (such as drag in aerodynamic simulations).
This convergence in terms of functionals is consistent with the notion of convergence
to entropy measure valued solutions [12], and references therein.

1.5 Aims and scope of the current paper

The current paper proposes and analyses an entropy stable spacetime DG method for
systems of conservation laws. The schemes are based on the following ingredients:

• The degrees of freedom of the formulation are the entropy variables, as opposed
to the conservative variables in standard DG formulations [4].

• The numerical flux function in the DG formulation is the entropy stable flux of
Tadmor [27], based on explicit entropy conservative fluxes [11] and appropriate
numerical diffusion operators [11]. At lowest order, our scheme reduces to the
first-order (implicit) finite volume scheme of [11].

• Shock capturing operators, similar to those proposed in [21] and [1] are introduced
to stabilize oscillations around shocks. A novel pressure scaling is introduced in
order to capture contact discontinuities with sharper resolution.

• Streamline diffusion operators are added for further stabilization of shocks and to
enable solution of the resulting nonlinear algebraic equations at each time step.

We obtain (formally) arbitrarily high-order accurate fully discrete entropy stable
schemes for a generic systems of conservation laws in several space dimensions on
unstructured grids. In addition to the entropy stability, we also prove (under the extra
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assumption that the approximate solutions are uniformly bounded in L∞) that the
approximate solutions generated by the shock-capturing streamline diffusion space-
time DG method converge to the entropy measure valued solutions of the underlying
system of conservation laws. Furthermore, a large number of numerical experiments
are presented to illustrate the robustness of the proposed schemes.

The rest of the paper is organized as follows: in Sect. 2, the spacetime DG formula-
tion is presented for a generic system of conservation laws on unstructured grids and
the shock capturing and streamline diffusion operators are introduced. The entropy
stability analysis is presented in Sect. 3. In Sect. 4, we show that the shock capturing
streamline diffusion method converges to an entropy measure valued solution of a sys-
tem of conservation laws. Implementation details and numerical results are presented
in Sects. 5 and 6, respectively.

2 The shock capturing streamline diffusion DG formulation

2.1 The mesh

At the n-th time level tn , we denote the time step as �tn and the update time interval
as I n = [tn, tn+1) and tn+1 − tn = �tn . For simplicity, we assume that the spatial
domain � ⊂ R

d is polyhedral and divide into a triangulation T i.e, a set of open
convex polyhedra K ⊂ R

d with plane faces. Furthermore, we assume mesh regularity
[19]. For a generic element (cell) K , we denote

�xK = diam(K ),

N (K ) =
{

K ′ ∈ T : K ′ = K ∧ measd−1(K ∩ K ′ > 0
}

.

The mesh width of the triangulation is �x(T ) = maxK �xK . A generic spacetime
element is the prism:

K × I n .

We also assume that there exists a constant C such that �tn ≤ C�x for all time
levels n.

2.2 Variational formulation

Given a strictly convex entropy function S, the conservative variables U and the entropy
variables V are one to one [6]. Consequently, the conservation law (1.1) can be recast
in terms of entropy variables as,

U(V)t +
d∑

k=1

Fk(V)xk = 0, (x, t) ∈ � × R+, (2.1)

Here, we have used the change of variable U = U(V) and retained the nota-
tion Fk(V) = Fk(U(V)) for all k for notational convenience. Following [1,28],
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Entropy stable space–time DG schemes 109

we approximate the conservation law (2.1) by a DG method. On a given triangulation
T with mesh width �x , we seek entropy variables

V�x ∈ Vp = (Pp(� × [0, T ]))m

=
{

W ∈ (L1(� × [0, T ]))m : W|K×I n is a polynomial of degree p in each component
}

(2.2)

such that the following quasilinear variational form is satisfied for each W�x ∈ Vp:

B
(
V�x , W�x)=BDG

(
V�x , W�x) + BSD

(
V�x , W�x) + BSC

(
V�x , W�x) = 0.

(2.3)

We elaborate on each of the three quasilinear forms (nonlinear in the first argument
and linear in the second) in the following.

2.3 The DG quasilinear form

The form BDG is given by,

BDG
(
V�x , W�x)

= −
∑

n

∑

K

∫

I n

∫

K

(
〈U(V�x ), W�x

t 〉 +
d∑

k=1

〈Fk(V�x ), W�x
xk

〉
)

dxdt

+
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−, V�x
n+1,+), W�x

n+1,−
〉
dx

−
∑

n

∑

K

∫

K

〈
U(V�x

n,−, V�x
n,+, ), W�x

n,+
〉
dx

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk,∗ (V�x
K ,−, V�x

K ,+
)
, W�x

K ,−〉

νk
K K ′

)
dσ(x)dt

−1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
W�x

K ,−, D(V�x
K ,+−V�x

K ,−)
〉
dσ(x)dt (2.4)

Here we have employed the notation,

Wn,±(x) = W(x, tn±),

∂K K ′ = K ∩ K ′,
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νK K ′ = Unit normal for edge KK’ pointing outwards from element K.

WK ,±(x, t) = lim
h→0

W(x ± hν, t), ∀x ∈ ∂K K ′ ,

D = D
(
V�x

K ,−, V�x
K ,+; νK K ′

)

for all W ∈ Vp. We remark that the boundary condition is ignored in the above
variational form by considering compactly supported (in the spatial domain) solutions
and test functions.

2.3.1 Numerical fluxes

Both the temporal and spatial numerical fluxes, need to be specified in order to complete
the DG quasilinear form. In order to obtain casuality (marching) after each time step,
we choose the temporal numerical flux to be the upwind flux:

U(a, b) = U(a). (2.5)

This ensures that we can use the values at the previous time step in order to compute
an update at the time level tn . A different choice of temporal numerical fluxes will
imply that all the degrees of freedom (for all times) are coupled and force us to solve
a very large non-linear algebraic system of equations.

The spatial numerical flux consists of the following two components,

2.3.2 Entropy conservative flux

The entropy conservative flux (in the k-th direction) is any flux [27] that satisfies the
relation:

〈b − a, F
k,∗(a, b)〉 = 
k(b) − 
k(a). (2.6)

Here, 
k = 〈V, Fk〉 − Qk is the entropy potential. The existence of such fluxes (for
any generic conservation law with an entropy framework) was shown by Tadmor in
[27]. More recently, explicit expressions of entropy conservative fluxes for specific
systems of interest like the shallow water equations [9] and Euler equations [18] have
been obtained.

2.3.3 Numerical diffusion operators

Following [9,11,28], we choose the numerical diffusion operator as,

D(a, b; ν) = RνP(�ν(·); a, b)R�
ν . (2.7)

Here, �ν, Rν are the eigenvalue and eigenvector matrices of the Jacobian ∂U(〈F, ν〉) in
the normal direction ν. Rν is evaluated at an averaged state, e.g. (a + b)/2, and scaled
such that RνR�

ν = UV. P is a non-negative matrix function. Examples of P include
P(�ν(·); a, b) = |�ν(

a+b
2 )| which leads to a Roe type scheme and P(�ν(·); a, b) =
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max{λmax (a; ν), λmax (b; ν)}ID, which leads to a Rusanov type scheme [11], where
λmax (U; ν) is the maximal wave speed in direction of ν, i.e. λmax (U; ν) is the spectral
radius of �ν(U).

2.4 Streamline diffusion operator

As the subsequent analysis will demonstrate, there is no numerical diffusion in the
interior of the space-time element K × I n . In order to suppress the resulting unphysical
oscillations near shocks, we choose the following streamline diffusion operator,

BSD(V�x , W�x )

=
∑

n

∑

K

∫

I n

∫

K

〈(
UV(V�x )W�x

t +
d∑

k=1

Fk
V(V�x )W�x

xk

)
, DSD Res

〉
dxdt (2.8)

with intra-element residual:

Res = U(V�x )t +
d∑

k=1

Fk(V�x )xk , (2.9)

and the scaling matrix is chosen as

DSD = C SD�xID, (2.10)

for any positive constant C SD . Note that the intra-element residual is well defined as
we are taking first-derivatives of a polynomial function.

2.5 Shock capturing operator

The streamline diffusion operator adds numerical diffusion in the direction of the
streamlines. However, we need further numerical diffusion in order to reduce possible
oscillations at shocks. We use the following shock capturing operator (similar to Barth
[1]):

BSC (V�x , W�x ) =
∑

n

∑

K

∫

I n

∫

K

DSC
n,K

(
〈W�x

t , UV(Ṽn,K )V�x
t 〉

+
d∑

k=1

〈W�x
xk

, UV(Ṽn,K )V�x
xk

〉
)

dxdt, (2.11a)

with

Ṽn,K = 1

meas(I n × K )

∫

I n

∫

K

V�x (x, t)dxdt.

being the cell average and the scaling factor,
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DSC
n,K = (�x)1−αC SC Resn,K + (�x)

1
2 −αC̄ SC BResn,K√∫

I n

∫
K (〈V�x

t , UV(Ṽn,K )V�x
t 〉 + ∑d

k=1〈V�x
xk

, UV(Ṽn,K )V�x
xk

〉)dxdt + �xθ

,

(2.11b)

with θ ≥ α + d/2 and

Resn,K =
√√√√

∫

I n

∫

K

〈 Res, U−1
V (V�x ) Res〉dxdt . (2.11c)

BResn,K =
⎛

⎝
∫

K

‖U(V�x
n,−) − U(V�x

n,+)‖2dx

+
∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

‖(Fk,∗(V�x
K ,−, V�x

K ,+) − Fk(V�x
K ,−))νk

K K ′ ‖2

+
∥∥∥∥

1

2
D(V�x

K ,+ − V�x
K ,−)

∥∥∥∥
2
)

dσ(x)dt

) 1
2

(2.11d)

Here, C SC , C̄ SC are positive constants.

3 Entropy stability for nonlinear systems

The design of the streamline diffusion (SD)-shock capturing (SC)-discontinuous
Galerkin(DG) scheme (2.3) is motivated by the consideration that it has to be entropy
stable for a generic nonlinear system of conservation laws, equipped with an entropy
formulation. We have the following theorem on entropy stability:

Theorem 3.1 Consider the system of conservation laws (1.1) with strictly convex
entropy function S and entropy flux functions Qk

(1≤k≤d). For simplicity, assume that
the exact and approximate solutions have compact support inside the spatial domain
�. Let the final time be denoted by t N− . Then, the streamline diffusion-shock capturing-
Discontinuous Galerkin scheme (2.3) approximating (1.1) has the following proper-
ties:

(i) The scheme (2.3) is conservative i.e, the approximate solutions U�x = U(V�x )

satisfy

∫

�

U(V�x (x, t N− ))dx =
∫

�

U(V�x (x, t0−))dx . (3.1)
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(ii) The scheme (2.3) is entropy stable i.e, the approximate solutions satisfy,

∫

�

S
(

U∗(t0−)
)

dx ≤
∫

�

S
(

U(V�x (x, t N− ))
)

dx ≤
∫

�

S
(

U(V�x (x, t0−))
)

dx,

(3.2)

with U∗ being the domain average:

U∗(t0−) = 1

meas(�)

∫

�

U(V(x, t0−))dx .

(iii) We obtain the following weak ”BV” estimate:

∑

n

∑

K

∫

K

‖V�x
n,− − V�x

n,+‖2dx

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈V�x
K ,+ − V�x

K ,−, D(V�x
K ,+ − V�x

K ,−)〉dσ(x)dt

+�x
∑

n

∑

K

∫

I n

∫

K

‖U(V�x )t +
d∑

k=1

Fk(V�x ))xk ‖2dxdt

+(�x)1−α
∑

n

∑

K

Resn,K

⎛

⎝
∫

I n

∫

K

‖∇xt V�x‖2dxdt

⎞

⎠

1
2

+(�x)
1
2 −α

∑

n

∑

K

BResn,K

⎛

⎝
∫

I n

∫

K

‖∇xt V�x‖2dxdt

⎞

⎠

1
2

≤ C. (3.3)

For some constant C, depending on the initial data and with the spacetime
gradient defined by,

∇xt V�x = (
V�x

t , V�x
x1

, V�x
x2

, · · · , V�x
xd

)
. (3.4)

Proof The proof of conservation (property (i)) (3.1) is a straightforward consequence
of setting the test function W�x = 1 and the definition of the numerical flux in (2.4).

��
To prove entropy stability, we proceed to show a series of claims.
Claim 1 The streamline diffusion operator (2.8) is positive i.e,

BSD(V�x , V�x ) ≥ 0. (3.5)

As, V�x ∈ Vp, it is an admissible test function in the quasilinear form BSD . Setting
W�x = V�x in (2.8), we obtain
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BSD
(
V�x , V�x )=

∑

n

∑

K

∫

I n

∫

K

〈(
UV(V�x )V�x

t +
d∑

k=1

Fk
V(V�x )V�x

xk

)
, DSD Res

〉
dxdt

=
∑

n

∑

K

∫

I n

∫

K

〈(
U(V�x )t +

d∑

k=1

Fk(V�x ))xk

)
, DSD Res

〉
dxdt

=
∑

n

∑

K

∫

I n

∫

K

〈
Res, DSDRes

〉
dxdt from defn (2.9),

=C SD�x
∑

n

∑

K

∫

I n

∫

K

‖Res‖2dxdt

=C SD�x
∑

n

∑

K

∫

I n

∫

K

∥∥∥∥∥U(V�x )t +
d∑

k=1

Fk(V�x ))xk

∥∥∥∥∥

2

dxdt

≥ 0.

(3.6)

Claim 2 The shock capturing operator (2.11a, 2.11b, 2.11c, 2.11d) is positive i.e:

BSC
(
V�x , V�x) ≥ 0. (3.7)

First, we observe that the strict convexity of the entropy function S implies that the
matrices UV and U−1

V are strictly positive definite. This implies that the term DSC
n,K ≥ 0.

We set as test function, W�x = V�x in (2.11a) and obtain,

BSC

(
V�x , V�x

)
=

∑

n

∑

K

∫

I n

∫

K

DSC
n,K

(
〈V�x

t , UV(Ṽ�x )V�x
t 〉

+
d∑

k=1

〈V�x
xk

, UV(Ṽ�x )V�x
xk

〉
)

dxdt,

≥
∑

n

∑

K

λ1 DSC
n,K

∫

I n

∫

K

‖∇xt V�x‖2dxdt

≥ 0. (3.8)

Here, λ1 is the smallest eigenvalue of the positive definite matrix UV.
Claim 3 Define a part of the DG form BDG (2.4) as,

Bs
DG

(
V�x , W�x

)
= −

∑

n

∑

K

∫

I n

∫

K

d∑

k=1

〈
Fk(V�x ), W�x

xk

〉
dxdt

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈
F

k,∗ (V�x
K ,−, V�x

K ,+
)
, W�x

K ,−
〉
νk

K K ′

)
dσ(x)dt

− 1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
W�x

K ,−, D
(
V�x

K ,+ − V�x
K ,−

)〉
dσ(x)dt

(3.9)
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Then, we have the following estimate:

Bs
DG

(
V�x , V�x

)
≥ 0. (3.10)

From the definition of the entropy potential 
k , we obtain that for all 1 ≤ k ≤ d,


k
xk

=
(〈

V, Fk
〉
− Qk

)

xk

=
〈
Vxk , Fk

〉
+ 〈V, Fk

xk
〉 − (Qk)xk

=
〈
Vxk , Fk

〉
(from definition of Qk).

Therefore,

∑

n

∑

K

∫

I n

∫

K

d∑

k=1

〈
Fk(V�x ), V�x

xk

〉
dxdt =

∑

n

∑

K

∫

I n

∫

K

d∑

k=1


k
(

V�x
)

xk
dxdt

=
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

d∑

k=1


k
(

V�x
K ,−

)
νk

K K ′dσ(x)dt.

Using the above identities, we obtain,

Bs
DG

(
V�x , V�x

)
= −

∑

n

∑

K

∫

I n

∫

K

d∑

k=1

〈
Fk (V�x) , V�x

xk

〉
dxdt

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk,∗ (V�x
K ,−, V�x

K ,+
)
, V�x

K ,−〉

νk
K K ′

)
dσ(x)dt.

−1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
V�x

K ,−, D(V�x
K ,+ − V�x

K ,−)
〉

dσ(x)dt

=
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′
(

d∑

k=1

(〈Fk,∗(V�x
K ,−, V�x

K ,+), V�x
K ,−〉 − 
k(V�x

K ,−))νk
K K ′

)
dσ(x)dt

−1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
V�x

K ,−, D(V�x
K ,+ − V�x

K ,−)
〉

dσ(x)dt
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= 1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

(〈Fk,∗(V�x
K ,−, V�x

K ,+), V�x
K ,−〉

−
k(V�x
K ,−))νk

K K ′

)
dσ(x)dt

+1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

(
〈
F

k,∗(V�x
K ,−, V�x

K ,+), V�x
K ,−

〉

−
k(V�x
K ,−))νk

K K ′

)
dσ(x)dt

−1

4

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
V�x

K ,−, D(V�x
K ,+ − V�x

K ,−)
〉

dσ(x)dt

−1

4

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
V�x

K ,−, D(V�x
K ,+ − V�x

K ,−)
〉

dσ(x)dt

(3.11)

Changing the orientation of the unit normal on the face K K ′ and rewriting the
arguments of the sums using the fact that the approximate solutions have compact
support in �, the above expression reduces to

Bs
DG

(
V�x , V�x

)
= −1

2

∑

n,K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

×

⎛

⎜⎜⎝
d∑

k=1

(〈Fk,∗(V�x
K ,−, V�x

K ,+), V�x
K ,+ − V�x

K ,−〉 − (
k(V�x
K ,+) − 
k(V�x

K ,−)))
︸ ︷︷ ︸

=0 from defn entropy conservative flux(2.6)

νk
K K ′

⎞

⎟⎟⎠ dσ(x)dt

+1

4

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
V�x

K ,+ − V�x
K ,−, D(V�x

K ,+ − V�x
K ,−)

〉
dσ(x)dt

= 1

4

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
V�x

K ,+ − V�x
K ,−, D(V�x

K ,+ − V�x
K ,−)

〉
dσ(x)dt

0 (from(2.7)). (3.12)

Claim 4 Defining a part of the DG form BDG (2.4) as

Bt
DG

(
V�x , W�x

)
= −

∑

n

∑

K

∫

I n

∫

K

〈
U(V�x ), W�x

t

〉
dxdt

+
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−), W�x
n+1,−

〉
dx −

∑

n

∑

K

∫

K

〈
U(V�x

n,−), W�x
n,+

〉
dx

(3.13)
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(here, we have directly assumed that the temporal numerical flux U is assumed to be
”upwind” (2.5)). The above defined part of the DG form satisfies the estimate,

Bt
DG(V�x , V�x ) ≥

∫

�

S
(

U(V�x (x, t N− ))
)

dx −
∫

�

S(U
(

V�x (x, t0−))
)

dx (3.14)

Setting W�x = V�x in (3.13), we obtain,

Bt
DG(V�x , V�x ) = −

∑

n

∑

K

∫

I n

∫

K

〈
U(V�x ), V�x

t

〉
dxdt

+
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−), V�x
n+1,−

〉
dx

−
∑

n

∑

K

∫

K

〈
U(V�x

n,−), V�x
n,+

〉
dx

=
∑

n

∑

K

∫

I n

∫

K

〈
Ut (V�x ), V�x

〉
dxdt (integrating by parts)

−
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−), V�x
n+1,−

〉
dx

+
∑

n

∑

K

∫

K

〈
U(V�x

n,+), V�x
n,+

〉
dx

+
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−), V�x
n+1,−

〉
dx

−
∑

n

∑

K

∫

K

〈
U(V�x

n,−), V�x
n,+

〉
dx

=
∑

n

∑

K

∫

I n

∫

K

S(U(V�x ))t dxdt (Definition of entropy function)

−
∑

n

∑

K

∫

K

〈
(U(V�x

n,−) − U(V�x
n,+)), V�x

n,+
〉

dx

=
∑

n

∑

K

∫

K

(
S(U(V�x

n+1,−)) − S(U(V�x
n,−))

)
dx

+
∑

n

∑

K

∫

K

(
S(U(V�x

n,−)) − S(U(V�x
n,+))

)
dx

−
∑

n

∑

K

∫

K

〈
(U(V�x

n,−) − U(V�x
n,+)), V�x

n,+
〉

dx
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=
∫

�

S

⎛

⎝U(V�x (x, t N− )))dx −
∫

�

S(U(V�x (x, t0−))

⎞

⎠ dx

+
∑

n

∑

K

∫

K

1∫

0

〈(
V�x

n,− − V�x
n,+

)
, UV(θ)

(
V�x

n,− − V�x
n,+

)〉
dθ

(change of variables:V(θ) = θV�x
n,− + (1 − θ)V�x

n,+)

≥
∫

�

S
(

U(V�x (x, t N− ))
)

dx −
∫

�

S(U
(

V�x (x, t0−))
)

dx

+
∑

n

∑

K

λ1

∫

K

‖V�x
n,− − V�x

n,+‖2dx

≥
∫

�

S
(

U(V�x (x, t N− ))
)

dx −
∫

�

S(U
(

V�x (x, t0−))
)

dx (3.15)

Now combining the four claims, we obtain

BDG

(
V�x , V�x

)
+ BSD

(
V�x , V�x

)
+ BSC

(
V�x , V�x

)
= 0,

⇒ Bt
DG

(
V�x , V�x

)
+ Bs

DG

(
V�x , V�x

)
+ BSD

(
V�x , V�x

)
+ BSC

(
V�x , V�x

)
= 0,

⇒
∫

�

S
(

U(V�x (x, t N− ))
)

dx −
∫

�

S
(

U(V�x (x, t0−))
)

dx ≤ 0,

⇒
∫

�

S
(

U(V�x (x, t N− ))
)

dx ≤
∫

�

S
(

U(V�x (x, t0−))
)

dx .

Thus, the upper bound in the entropy estimate (3.2).
To prove the lower bound on entropy in estimate (3.2), we follow Barth [2] and

define the domain average,

U∗(tn−) = 1

meas(�)

∫

�

U
(

V�x (x, tn−)
)

dx . (3.16)

From conservation, we know that U∗(tn−) = U∗(t0−).
For any given time level, we have

S(U) = S(U∗) + 〈V(U∗), (U − U∗)〉 +
1∫

0

〈(U − U∗), SUU(U(θ))(U − U∗)〉 dθ,

with change of variables U(θ) = θU+ (1−θ)U∗. Integrating the above equation over
space and using the definition of domain average (3.16) and the strict convexity of the
entropy function, we obtain,
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∫

�

S(U∗)dx ≤
∫

�

S(U)dx

for any time level.
As a consequence of conservation, we obtain,

∫

�

S
(

U∗(t0−)
)

dx =
∫

�

S(U∗(t N− ))dx ≤
∫

�

S(U
(

V�x (x, t N− ))
)

dx,

thus obtaining the lower bound in the entropy estimate (3.2).
Combining the above claims of positivity and using the above estimate results in

the following weak BV estimate,

∑

n

∑

K

∫

K

‖V�x
n,− − V�x

n,+‖2dx

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
V�x

K ,+ − V�x
K ,−, D

(
V�x

K ,+ − V�x
K ,−

)〉
dσ(x)dt

+�x
∑

n

∑

K

∫

I n

∫

K

‖U(V�x )t +
d∑

k=1

Fk(V�x ))xk ‖2dxdt

+
∑

n

∑

K

λ1 DSC
n,K

∫

I n

∫

K

‖∇xt V‖2dxdt ≤ C. (3.17)

The weak BV estimate (3.3) follows from the following straightforward estimate,

(�x)1−α
∑

n

∑

K

Resn,K

⎛

⎝
∫

I n

∫

K

‖∇xt V�x‖2dxdt

⎞

⎠

1
2

+(�x)
1
2 −α

∑

n

∑

K

BResn,K

⎛

⎝
∫

I n

∫

K

‖∇xt V�x‖2dxdt

⎞

⎠

1
2

≤ C
∑

n

∑

K

DSC
n,K

∫

I n

∫

K

‖∇xt V�x‖2dxdt (3.18)

that is a consequence of the definitions of DSC
n,K , θ and the estimate (3.17).

Remark 3.2 The lowest order version of the streamline diffusion-shock capturing-DG
scheme (2.3) is given by considering the test functions in the space V0 and reduces to a
generalization (with implicit time stepping) of the first-order finite volume scheme pro-
posed by Tadmor in [27]. Thus, the scheme (2.3) can be considered as a finite element
fully discrete generalization of well-known entropy stable finite volume schemes.
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4 Convergence analysis for systems of conservation laws

The ultimate goal for the numerical analysis of the streamline diffusion-shock cap-
turing DG scheme (2.3) would be to show that the approximate solution converge to
the entropy solution of the multi-dimensional system (1.1). However, such a result is
currently beyond the reach of analysis as there are no well-posedness results for the
continuous problem (even for small initial data in several space dimensions). Conse-
quently, the analysis of numerical schemes for conservation laws has focussed on two
special cases:

(i) Scalar conservation laws i.e, (1.1) with m = 1.
(ii) Linear symmetrizable systems i.e, conservation laws of the form,

Ut +
d∑

k=1

AkUxk = 0, (x, t) ∈ � × R+. (4.1)

Here, Ak ∈ R
m×m are constant matrices (for simplicity). Furthermore, we assume

that there exists B ∈ R
m×m such that

(a) B is symmetric, (strictly) positive definite.
(b) For all 1 ≤ k ≤ d, the matrix B Ak is symmetric.

If such a ”symmetrizer” B exists, then the linear system (4.1) is termed a sym-
metrizable or Friedrichs system. It is easy to check that the symmetrizable system
(4.1) is equipped with the following entropy formulation:

S(U) = 1

2
〈BU, U〉, Qk(U ) = 1

2
〈U, B AkU〉, V = BU, 
k(U) = Qk(U).

(4.2)

A robust numerical scheme should converge to the entropy solutions of scalar conser-
vation laws and the weak solutions of the linear symmetrizable system. We will show
that our numerical scheme (2.3) does indeed converge in both the above cases.

However, we would like to prove some results for the general case of a nonlinear
system in several space dimensions (in addition to entropy stability). Given the dis-
cussion in the introduction about the suitability of entropy measure valued solutions
(1.6), (1.7) as the appropriate solution concept in this context, the main theoretical
results of this paper are to show that the numerical scheme (2.3) converge to a entropy
measure valued solution for a nonlinear system of conservation laws (1.1). Further-
more, we will show that in the special cases of scalar conservation laws as well as
linear symmetrizable systems, convergence to measure valued solutions (together with
consistency with initial data) automatically implies convergence to entropy solutions.
We start with the following convergence theorem,

Theorem 4.1 Let U�x = U(V�x ) be the approximate solutions of the system (1.1)
generated by the streamline diffusion-shock capturing DG scheme (2.3). Under the
assumption that the approximation solutions satisfy the uniform L∞ bound,

‖V�x‖L∞(�×R+) ≤ C, (4.3)
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the approximate solutions converge to a measure valued solution (1.6) of the conser-
vation law (1.1).

Proof For simplicity, we will only consider the case p ≥ 1. The p = 0 case can be
proved using a Lax–Wendroff type argument [13].

To show convergence of the approximate solutions to a measure valued solution of
(1.1), we consider any compactly supported test function ϕ ∈ (

C∞
c (� × (0,∞))

)m

and denote its local H1 projection into the space (Pp)
m as ϕ�x i.e,

ϕ�x = ��x (ϕ), (4.4)

with ��x |K×I n : (L2)m �→ (Pp(K × I n))m satisfies

∫

I n

∫

K

〈
∇xt (�

�x (ϕ)), UV(Ṽn,K )∇xt W
〉

dxdt =
∫

I n

∫

K

〈
∇xt (ϕ), UV(Ṽn,K )∇xt W

〉
dxdt,

∀W ∈ (Pp(K × I n))m

∫

I n

∫

K

��x (ϕ)dxdt =
∫

I n

∫

K

ϕdxdt (4.5a)

Note that the scaling UV is a constant matrix as it is evaluated at the (spacetime)
cell average Ṽn,K . Hence, this projection operator for the infinitely smooth function
ϕ satisfies the following stability and approximation properties (see [19] or other
references therein),

‖∇xtϕ
�x‖L2(K×I n) ≤ C‖∇xtϕ‖L2(K×I n)

‖ϕ − ϕ�x‖L2(K×I n) ≤ C�x‖∇xtϕ‖L2(K×I n).

‖ϕ − ϕ�x‖L2(∂(K×I n)) ≤ C�x
1
2 ‖∇xtϕ‖L2(K×I n)

(4.5b)

In the remainder of the paper, we denote a generic positive constant as C . The proof
of convergence consists of the following claims:

Claim 1 The streamline diffusion operator defined in (2.8) satisfies,

BSD(V�x ,ϕ�x ) → 0 as �x → 0. (4.6)

To prove the claim, we calculate the bilinear form (2.8),

∣∣∣BSD(V�x ,ϕ�x )

∣∣∣ =
∣∣∣∣∣∣

∑

n

∑

K

∫

I n

∫

K

〈(
U(V�x )ϕ�x

t +
d∑

k=1

Fk(V�x )ϕ�x
xk

)
, DSDRes

〉
dxdt

∣∣∣∣∣∣

≤ C�x‖V�x‖L∞(�×[0,T ])|
∑

n

∑

K

‖ϕ�x‖H1(K×I n)

⎛

⎝
∫

I n

∫

K

‖Res‖2dxdt

⎞

⎠

1
2
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≤ C‖V�x‖L∞(�×[0,T ])�x
1
2

⎛

⎝
∑

n,K

‖ϕ�x‖2
H1(K×I n)

⎞

⎠

1
2
⎛

⎝�x
∑

n,K

∫

I n

∫

K

‖Res‖2dxdt

⎞

⎠

1
2

≤ C‖V�x‖L∞(�×[0,T ])�x
1
2 ‖ϕ‖H1(�×[0,T ]) → 0 as �x → 0.

Here, the last estimate follows the stability of the projection operator and from the
weak BV estimate (3.3). Claim 2 The shock capturing operator defined in (2.11a,
2.11b, 2.11c, 2.11d) satisfies,

BSC

(
V�x ,ϕ�x

)
→ 0 as �x → 0. (4.7)

Define

BSC,1(V�x ,ϕ�x ) :=
∑

n

∑

K

∫

I n

∫

K

DSC,1
n,K

(
〈ϕ�x

t , UV(Ṽn,K )V�x
t 〉

+
d∑

k=1

〈ϕ�x
xk

, UV(Ṽn,K )V�x
xk

〉
)

dxdt,

with

DSC,1
n,K = (�x)1−αC SC Resn,K√∫

I n
∫

K

(
〈V�x

t , UV(Ṽn,K )V�x
t 〉 + ∑d

k=1〈V�x
xk , UV(Ṽn,K )V�x

xk 〉
)

dxdt + �xθ

,

Using the strict positivity of UV, we obtain that,

DSC,1
n,K ≤ C

(�x)1−αC SC Resn,K
(∫

K

∫
I n ‖∇xt V‖2dxdt

) 1
2 + �xθ

.

Therefore,

|BSC,1(V�x ,ϕ�x )| ≤ C(�x)1−α‖V�x‖L∞(�×[0,T ])⎛

⎝
∑

n

∑

K

Resn,K ‖ϕ�x‖H1(K×I n)

(∫
K

∫
I n ‖∇xt V‖2dxdt

) 1
2

(∫
K

∫
I n ‖∇xt V‖2dxdt

) 1
2 + �xθ

⎞

⎠

≤ C(�x)
1
2 −α

⎛

⎝
∑

n,K

‖ϕ�x‖2
H1(K×I n)

⎞

⎠

1
2
⎛

⎝�x
∑

n,K

∫

I n

∫

K

‖Res‖2dxdt

⎞

⎠

1
2

≤ C(�x)
1
2 −α‖ϕ‖H1(�×[0,T ]) → 0 as �x → 0.

Here, the last estimate follows the stability of the projection operator and from the
weak BV estimate (3.3).
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Similarly, define

BSC,2(V�x ,ϕ�x ) :=
∑

n

∑

K

∫

I n

∫

K

DSC,2
n,K

(
〈ϕ�x

t , UV(Ṽn,K )V�x
t 〉 +

d∑

k=1

〈ϕ�x
xk

, UV(Ṽn,K )V�x
xk

〉
)

dxdt,

with

DSC,2
n,K = (�x)

1
2 −αC SC BResn,K√∫

I n
∫

K

(
〈V�x

t , UV(Ṽn,K )V�x
t 〉 + ∑d

k=1〈V�x
xk , UV(Ṽn,K )V�x

xk 〉
)

dxdt + �xθ

,

Using the strict positivity of UV, we obtain that,

DSC,2
n,K ≤ C

(�x)
1
2 −αC SC BResn,K

(∫
K

∫
I n ‖∇xt V‖2dxdt

) 1
2 + �xθ

.

Therefore,

|BSC,2(V�x ,ϕ�x )| ≤ C(�x)
1
2 −α‖V�x‖L∞(�×[0,T ])⎛

⎝
∑

n

∑

K

BResn,K ‖ϕ�x‖H1(K×I n)

(∫
K

∫
I n ‖∇xt V‖2dxdt

) 1
2

(∫
K

∫
I n ‖∇xt V‖2dxdt

) 1
2 + �xθ

⎞

⎠

≤ C(�x)
1
2 −α

⎛

⎝
∑

n,K

‖ϕ�x‖2
H1(K×I n)

⎞

⎠

1
2
⎛

⎝
∑

n,K

|BResn,K |2
⎞

⎠

1
2

≤ C(�x)
1
2 −α‖ϕ‖H1(�×[0,T ]) → 0 as �x → 0.

Here, the last estimate follows the stability of the projection operator and from the fact
that the estimate on the BRes term is a straightforward consequence of the weak BV
estimate (3.3).

Claim 3 Let a part of the DG form (2.4) be defined as,

Bs1
DG(V�x ,ϕ�x ) =

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk,∗(V�x
K ,−, V�x

K ,+),ϕ�x
K ,−〉νk

K K ′

)
dσ(x)dt

(4.8)

Then,

Bs1
DG

(
V�x ,ϕ�x) → 0 as �x → 0. (4.9)
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Switching the normal direction, we perform the following calculation,

Bs1
DG(V�x , ϕ�x ) = 1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk,∗(V�x
K ,−, V�x

K ,+), ϕ�x
K ,−〉νk

K K ′

)
dσ(x)dt

−1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk,∗(V�x
K ,−, V�x

K ,+), ϕ�x
K ,+〉νk

K K ′

)
dσ(x)dt

Adding and subtracting ϕ (using the continuity of the smooth test function ϕ across
every edge) to the above, results in

|Bs1
DG (V�x ,ϕ�x )| ≤ 1

2

∣∣∣∣∣∣∣

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk,∗(V�x
K ,−, V�x

K ,+), (ϕ�x
K ,− − ϕ)〉νk

K K ′

)
dσ(x)dt

∣∣∣∣∣∣∣

+ 1

2

∣∣∣∣∣∣∣

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk,∗(V�x
K ,−, V�x

K ,+), (ϕ�x
K ,+ − ϕ)〉νk

K K ′

)
dσ(x)dt

∣∣∣∣∣∣∣

≤ C‖V�x ‖L∞(�×[0,T ])
∑

n

∑

K

(meas(∂(I n × K )))
1
2 ‖ϕ�x − ϕ‖L2(∂(K×I n )),

≤ C�x
3
2 ‖V�x ‖L∞(�×[0,T ])

∑

n

∑

K

(meas(∂(I n × K )))
1
2 ‖ϕ‖H2(K×I n ),

≤ C�x‖V�x ‖L∞(�×[0,T ])‖ϕ‖H2(�×[0,T ]) → 0 as �x → 0,

Note that in the above estimate, we have used a stronger version of the approximation
property (4.5):

‖ϕ − ϕ�x‖L2(∂(K×I n)) ≤ C�x
3
2 ‖ϕ‖H2(K×I n), (4.10)

which follows from the regularity of solutions of the elliptic equation (4.5a) that
defines the projection operator and from the fact that the test function ϕ is infinitely
differentiable.

Claim 4 Defining a part of the DG form as

Bs2
DG(V�x ,ϕ�x )=−1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
ϕ�x

K ,−, D
(
V�x

K ,+ − V�x
K ,−

)〉
dσ(x)dt,

(4.11)

we have

Bs2
DG(V�x ,ϕ�x ) → 0 as �x → 0. (4.12)
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We proceed as in the previous claim to calculate,

|Bs2
DG(V�x ,ϕ�x )|

≤C‖V�x‖L∞(�×[0,T ])
∣∣∣∣
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈(ϕ�x
K ,−−ϕ), (V�x

K ,+−V�x
K ,−)〉dσ(x)dt

∣∣∣∣

+C‖V�x‖L∞(�×[0,T ])
∣∣∣∣
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈(ϕ�x
K ,+−ϕ), (V�x

K ,+ − V�x
K ,−)〉dσ(x)dt

∣∣∣∣

≤ C

(∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

‖V�x
K ,+ − V�x

K ,−‖2dσ(x)dt

) 1
2

(∑

n

∑

K

∑

K ′∈N (K )

‖ϕ�x
K ,+ − ϕ‖2

L2(∂K K ′×I n)

) 1
2

≤ C�x
1
2

(∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

‖V�x
K ,+ − V�x

K ,−‖2dσ(x)dt

) 1
2

‖ϕ‖H1(�×[0,T ]) (by(4.5))

→ 0, as �x → 0, (by the weak BV estimate (3.3)).

Claim 5 Defining a part of the DG form (2.4) as

Bt1
DG(V�x ,ϕ�x ) =

∑

n

∑

K

∫

K

〈U�x
n+1,−,ϕ�x

n+1,−〉dx −
∑

n

∑

K

∫

K

〈U�x
n,−,ϕ�x

n,+〉dx

(4.13)

we have

Bt1
DG(V�x ,ϕ�x ) → 0 as �x → 0. (4.14)

Adding and subtracting ϕn = ϕ(tn) and using the fact that ϕ is compactly supported
in (0, T ),

|Bt1
DG(V�x ,ϕ�x )| ≤

∑

n

∑

K

∫

K

|〈U�x
n,−,ϕ�x

n,+ − ϕn〉|dx

+
∑

n

∑

K

∫

K

|〈U�x
n+1,−,ϕ�x

n+1,− − ϕn+1〉|dx

≤ C‖V�x‖L∞(�×[0,T ])
∑

n

×
∑

K

(meas(∂(I n × K )))
1
2 (‖ϕ�x

n,− − ϕn‖L2(K ) + ‖ϕ�x
n+1,+ − ϕn+1‖L2(K ))
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≤ C�x‖V�x‖L∞(�×[0,T ])‖ϕ‖H2(�×(0,T )) (by(4.10)),

→ 0 as �x → 0,

Claim 6 The following bilinear form,

BDG(V�x ,ϕ − ϕ�x ) = −
∑

n

∑

K

∫

I n

∫

K

(〈U(V�x ), (ϕ − ϕ�x )t 〉

+
d∑

k=1

〈F(V �x ), (ϕ − ϕ�x )xk 〉)dxdt (4.15)

satisfies

BDG
(
V�x ,ϕ − ϕ�x) → 0 as �x → 0. (4.16)

We estimate,

|BDG
(
V�x ,ϕ − ϕ�x) | ≤

∑

n

∑

K

∫

I n

∫

K

∣∣∣∣

(〈
U(V�x ), (ϕ − ϕ�x )t

〉

+
d∑

k=1

〈
Fk(V�x ), (ϕ − ϕ�x )xk )

〉)∣∣∣∣∣ dxdt

≤ C‖V�x‖L∞(�×[0,T ])‖ϕ − ϕ�x‖H1(�×[0,T ])
≤ C�x‖V�x‖L∞(�×[0,T ])‖ϕ‖H2(�×(0,T )) → 0 as �x → 0.

Here, we have used the stronger approximation result:

‖ϕ − ϕ�x‖H1(K×I n) ≤ C�x‖ϕ‖H2(K×I n), (4.17)

which follows from the regularity of the solutions to the elliptic equation (4.5a) and
the fact that the test function ϕ is infinitely differentiable.

To prove convergence, we observe that

T∫

0

∫

�

(
〈U(V�x ),ϕt 〉 +

∑

k

〈Fk(V�x ),ϕxk
〉
)

dxdt

=
∑

n

∑

K

∫

I n

∫

K

(
〈U(V�x ),ϕt 〉 +

∑

k

〈Fk(V�x ),ϕxk
〉
)

dxdt

= −BDG

(
V�x ,ϕ − ϕ�x

)
− B

(
V�x ,ϕ�x

)

+Bt1
DG

(
V�x ,ϕ�x

)
+ Bs1

DG

(
V�x ,ϕ�x

)
+ Bs2

DG

(
V�x ,ϕ�x

)
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+BSD

(
V�x ,ϕ�x

)
+ BSC

(
V�x ,ϕ�x

)

→ 0 as �x → 0, (by (2.3; 4.6; 4.7; 4.9; 4.12; 4.14; 4.16)).

Hence

T∫

0

∫

�

(
〈U(V�x ),ϕt 〉 +

∑

k

〈Fk(V�x ),ϕxk
〉
)

dxdt → 0 as �x → 0.

On account of the uniform L∞ bound, we have that there exists a young measure
μ such that V�x ⇀ μ, in the sense of measures, as �x → 0. Furthermore as the
nonlinearities commute with convergence in the sense of young measures [7], we have
that

lim
�x→0

T∫

0

∫

�

(
〈U(V�x ),ϕt 〉 +

∑

k

〈Fk(V�x ),ϕxk
〉
)

dxdt

=
T∫

0

∫

�

(
〈〈U,μx,t 〉,ϕt 〉 +

d∑

k=1

〈〈Fk,μx,t 〉,ϕxk
〉
)

dxdt

Hence, combining the above two limits, we see that the young measure μ is a
measure valued solution (1.6) of (1.1). ��

The next step in the analysis is to show consistency with the entropy condition
(1.7). We do so in the following theorem.

Theorem 4.2 Let V�x be the approximate solutions generated by the scheme (2.3).
We assume that the parameter α > 0 in (2.11b) and the approximate solutions are uni-
formly bounded (4.3). Then, the limit measure valued solution μ satisfies the entropy
condition (1.7).

Proof We consider a smooth test function ϕ ≥ 0 and compactly supported in � ×
(0, T ) and show consistency with the entropy condition (1.7) in the following series
of claims.

Claim 1 Let the DG quasilinear form be defined as in (2.4), then

lim
�x→0

B(V�x , V�xϕ) ≥ −
T∫

0

∫

�

(
〈S,μx,t 〉ϕt +

d∑

k=1

〈Qk,μx,t 〉ϕxk

)
dxdt (4.18)

To prove the claim we define ϕn = ϕ(tn) and start with the following computation,

Bt
DG(V�x , V�xϕ) = −

∑

n

∑

K

∫

I n

∫

K

〈
U(V�x ), (V�xϕ)t

〉
dxdt

+
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−), V�x
n+1,−ϕn+1

〉
dx
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−
∑

n

∑

K

∫

K

〈
U(V�x

n,−), V�x
n,+ϕn

〉
dx

=
∑

n

∑

K

∫

I n

∫

K

〈
Ut (V�x ), V�xϕ

〉
dxdt (integrating by parts)

−
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−), V�x
n+1,−ϕn+1

〉
dx

+
∑

n

∑

K

∫

K

〈
U(V�x

n,+), V�x
n,+ϕn

〉
dx

+
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−), V�x
n+1,−ϕn+1

〉
dx

−
∑

n

∑

K

∫

K

〈
U(V�x

n,−), V�x
n,+ϕn

〉
dx

=
∑

n

∑

K

∫

I n

∫

K

S(U(V�x ))tϕdxdt (Definition of entropy function)

−
∑

n

∑

K

∫

K

〈
(U(V�x

n,−) − U(V�x
n,+)), V�x

n,+ϕn
〉

dx

= −
∑

n

∑

K

∫

I n

∫

K

S(V�x )ϕt dxdt (Integrating by parts)

+
∑

n

∑

K

∫

K

S(V�x
n+1,−)ϕn+1dx −

∑

n

∑

K

∫

K

S(V�x
n,+)ϕndx

−
∑

n

∑

K

∫

K

〈
(U(V�x

n,−) − U(V�x
n,+)), V�x

n,+ϕn
〉

dx

= −
∑

n

∑

K

∫

I n

∫

K

S(V�x )ϕt dxdt

+
∑

n

∑

K

∫

K

(S(U(V�x
n,−)) − S(U(V�x

n,+))

−〈(U(V�x
n,−) − U(V�x

n,+)), V�x
n,+〉)ϕndx

= −
∑

n

∑

K

∫

I n

∫

K

S(V�x )ϕt dxdt

+
∑

n

∑

K

∫

K

( 1∫

0

〈(
V�x

n,− − V�x
n,+

)
, UV(θ)

(
V�x

n,− − V�x
n,+

)〉
dθ

)
ϕndx

≥ −
T∫

0

∫

�

S(V�x )ϕt dxdt (4.19)
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The last step follows from the strict positivity of UV and positivity of the test
function ϕ.

As

∑

n

∑

K

∫

I n

∫

K

d∑

k=1

〈
Fk(V�x ), (V�xϕ)xk

〉
dxdt

= −
∑

n

∑

K

∫

I n

∫

K

d∑

k=1

〈
(Fk(V�x ))xk , V�xϕ

〉
dxdt

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk(V�x
K ,−), V�x

K ,−〉νk
K K ′

)
ϕdσ(x)dt

= −
∑

n

∑

K

∫

I n

∫

K

d∑

k=1

Qk(V�x )xk ϕdxdt (definition of entropy flux)

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk(V�x
K ,−), V�x

K ,−〉ϕνk
K K ′

)
dσ(x)dt

=
∑

n

∑

K

∫

I n

∫

K

d∑

k=1

Qk(V�x )ϕxk dxdt

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

d∑

k=1

(
〈Fk(V�x

K ,−), V�x
K ,−〉−Qk(V�x

K ,−)
)
ϕνk

K K ′dσ(x)dt

=
∑

n

∑

K

∫

I n

∫

K

d∑

k=1

Qk(V�x )ϕxk dxdt

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

d∑

k=1


k(V�x
K ,−)ϕνk

K K ′dσ(x)dt. (4.20)

Repeating the calculation in (3.11) and (3.12), we obtain,

Bs
DG (V�x , V�x ϕ) = −

∑

n

∑

K

∫

I n

∫

K

d∑

k=1

〈Fk (V�x ), (V�x ϕ)xk 〉dxdt

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

⎛

⎝
d∑

k=1

〈Fk,∗(V�x
K ,−, V�x

K ,+), V�x
K ,−ϕ〉νk

K K ′

⎞

⎠ dσ(x)dt

− 1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
V�x

K ,−, D(V�x
K ,+ − V�x

K ,−)
〉

dσ(x)dt
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= −
∑

n

∑

K

∫

I n

∫

K

d∑

k=1

Qk (V�x )ϕxk dxdt

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

⎛

⎝
d∑

k=1

(〈Fk,∗(V�x
K ,−, V�x

K ,+), V�x
K ,−〉

− 
k (V�x
K ,−))νk

K K ′

⎞

⎠ϕdσ(x)dt

− 1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
V�x

K ,−, D(V�x
K ,+ − V�x

K ,−)
〉

dσ(x)dt

≥ −
∑

n

∑

K

∫

I n

∫

K

d∑

k=1

Qk (V�x )ϕxk dxdt (4.21)

Using the definition of the residual (2.9) and the streamline diffusion operator,we
have

BSD(V�x , V�x ϕ) =
∑

n

∑

K

∫

I n

∫

K

〈(
U(V�x )(V�x ϕ)t +

d∑

k=1

Fk
V(V�x )(V�x ϕ)xk

)
, DSDRes

〉
dxdt

=
∑

n

∑

K

∫

I n

∫

K

〈
Res, DSDRes

〉
ϕdxdt

+
∑

n

∑

K

∫

I n

∫

K

〈(
U(V�x )V�x ϕt +

d∑

k=1

Fk
V(V�x )V�x ϕxk

)
, DSDRes

〉
dxdt

︸ ︷︷ ︸
T1

≥ T1. (4.22)

However repeating the calculations in the proof of (4.6), we see that

|T1| ≤ C‖V�x ‖L∞(�×[0,T ])�x
1
2

( ∑

n,K

‖ϕ�x ‖2
H1(K×I n )

) 1
2
(

�x
∑

n,K

∫

I n

∫

K

‖Res‖2dxdt

) 1
2

≤ C‖V�x ‖L∞(�×[0,T ])�x
1
2 ‖ϕ‖H1(�×[0,T ]) → 0 as �x → 0.

(4.23)

Next, from the definition of the shock capturing operator and strict positivity of UV,
we obtain

BSC (V�x , V�x ϕ) =
∑

n

∑

K

∫

I n

∫

K

DSC
n,K (〈(V�x ϕ)t , UV(Ṽn,K )V�x

t 〉 +
d∑

k=1

〈(V�x ϕ)xk , UV(Ṽn,K )V�x
xk

〉)dxdt

=
∑

n

∑

K

∫

I n

∫

K

DSC
n,K (〈V�x

t , UV(Ṽn,K )V�x
t 〉 +

d∑

k=1

〈V�x
xk

, UV(Ṽn,K )V�x
xk

〉)ϕdxdt

+
∑

n

∑

K

∫

I n

∫

K

DSC
n,K (〈V�x ϕt , UV(Ṽn,K )V�x

t 〉 +
d∑

k=1

〈(V�x ϕxk , UV(Ṽn,K )V�x
xk

〉)dxdt

︸ ︷︷ ︸
T2

≥ T2

(4.24)

123



Entropy stable space–time DG schemes 131

Repeating the calculation in the proof of (4.7), we obtain

|T2| ≤ C(�x)
1
2 −α‖V�x‖L∞(�×[0,T ])‖ϕ‖H1(�×[0,T ])⎛

⎝
(

�x
∑

n,K

∫

I n

∫

K

‖Res‖2dxdt

) 1
2 +

(∑

n,K

|BResn,K |2
) 1

2

⎞

⎠

≤ C(�x)
1
2 −α‖ϕ‖H1(�×[0,T ]) → 0 as �x → 0. (4.25)

From (4.19), (4.21), (4.22) and (4.24), we have

B(V�x , V�xϕ) = Bt
DG(V�x , V�xϕ) + Bs

DG(V�x , V�xϕ)

+BSD(V�x , V�xϕ) + BSC (V�x , V�xϕ)

≥ −
⎛

⎝
T∫

0

∫

�

(
S(V�x )ϕt +

d∑

k=1

Qk(V�x )ϕxk

)
dxdt

⎞

⎠ + T1 + T2.

Passing to the limit in the above expression as �x → 0, using the commutation of
nonlinearities and limit in the sense of measures and using (4.23) and (4.25) results
in,

lim
�x→0

B
(
V�x , V�xϕ

) ≥ −
T∫

0

∫

�

(
〈S,μx,t 〉ϕt +

d∑

k=1

〈Qk,μx,t 〉ϕxk

)
dxdt,

thus proving the claim.
Next, we use the H1 projection operator ��x from (4.4) and show the following

claim,

Claim 2 We have

lim
�x→0

B(V�x , V�xϕ − ��x (V�xϕ)) = 0. (4.26)

We start with calculations involving the DG quasilinear form (2.4). Let,

Bint
DG (V�x , (V�x ϕ − ��x (V�x ϕ)))

= −
∑

n

∑

K

∫

I n

∫

K

(〈U(V�x ), (V�x ϕ − ��x (V�x ϕ))t 〉 +
d∑

k=1

〈Fk(V�x ), (V�xϕ − ��x (V�xϕ))xk 〉)dxdt

=
∑

n

∑

K

∫

I n

∫

K

(〈U(V�x )t , (V�xϕ − ��x (V�xϕ))〉 +
d∑

k=1

〈Fk(V�x )xk , (V
�x ϕ − ��x (V�x ϕ))〉)dxdt

︸ ︷︷ ︸
T3

−
∑

n

∑

K

∫

K

〈U(V�x
n+1,−), (V�xϕ − ��x (V�xϕ))n+1,−〉dx
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+
∑

n

∑

K

∫

K

〈U(V�x
n+), (V�x ϕ − ��x (V�x ϕ))n,+〉dx

−
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk(V�x
K ,−), (V�x ϕ − ��x (V�x ϕ))K ,−〉νk

K K ′

)
dσ(x)dt (4.27)

Using the definition of the residual (2.9), the weak BV estimate (3.3) and the projection
error estimate (4.5b), we obtain,

|T3| =
∣∣∣∣∣∣

∑

n

∑

K

∫

I n

∫

K

〈
Res, (V�xϕ − ��x (V�xϕ))

〉
dxdt

∣∣∣∣∣∣

≤
∑

n

∑

K

Resn,K ‖V�xϕ − ��x (V�xϕ)‖L2(K×I n)

≤ C�x
∑

n

∑

K

Resn,K ‖∇xt (V�xϕ)‖L2(K×I n)

≤ C�x
1
2 ‖V�x‖L∞(�×[0,T ]‖ϕ‖H1(�×(0,T ))

(
�x

∑

n,K

∫

I n

∫

K

‖Res‖2dxdt

) 1
2

+C�xα‖ϕ‖L∞(�×[0,T ]

⎛

⎜⎝�x1−α
∑

n

∑

K

Resn,K

⎛

⎝
∫

I n

∫

K

‖∇xt V�x‖2dxdt

⎞

⎠

1
2
⎞

⎟⎠

→ 0, as �x → 0. (4.28)

Using (4.27) and calculating with the full DG quasilinear form, we obtain

BDG(V�x , (V�xϕ − ��x (V�xϕ))) = T3

−
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−), (V�xϕ − ��x (V�xϕ))n+1,−〉
dx

+
∑

n

∑

K

∫

K

〈
U(V�x

n+), (V�xϕ − ��x (V�xϕ))n,+〉
dx

−
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk(V�x
K ,−), (V�xϕ−��x (V�xϕ))K ,−〉νk

K K ′

)
dσ(x)dt

+
∑

n

∑

K

∫

K

〈
U(V�x

n+1,−), (V�xϕ − ��x (V�xϕ))n+1,−〉
dx

−
∑

n

∑

K

∫

K

〈
U(V�x

n−), (V�xϕ − ��x (V�xϕ))n,+〉
dx

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

(
d∑

k=1

〈Fk,∗(V�x
K ,−, V�x

K ,+), (V�xϕ − ��x (V�xϕ))K ,−〉

νk
K K ′

)
dσ(x)dt
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−1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
(V�xϕ − ��x (V�xϕ))K ,−, D

(
V�x

K ,+ − V�x
K ,−

)〉
dσ(x)dt

= T3 +
∑

n

∑

K

∫

K

〈
U(V�x

n,+) − U(V�x
n,−), (V�xϕ − ��x (V�xϕ))n,+〉

dx

+
∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

( d∑

k=1

〈Fk,∗(V�x
K ,−, V�x

K ,+) − Fk(V�x
K ,−),

(V�xϕ − ��x (V�xϕ))K ,−〉νk
K K ′

)
dσ(x)dt

−1

2

∑

n

∑

K

∑

K ′∈N (K )

∫

I n

∫

∂K K ′

〈
(V�xϕ − ��x (V�xϕ))K ,−, D(V�x

K ,+ − V�x
K ,−)

〉
dσ(x)dt

(4.29)

Using the definition of the boundary residual in (2.11d), the weak BV estimate (3.3),
the estimate (4.28) and the projection error estimate (4.5), the above can be simplified
as

|BDG(V�x , (V�xϕ − ��x (V�xϕ)))| ≤ |T3|
+

∑

n

∑

K

BResn,K ‖V�xϕ − ��x (V�xϕ))‖L2(∂(I n×K ))

≤ |T3| + C�x
1
2
∑

n

∑

K

BResn,K ‖∇xt (V�xϕ)‖L2(K×I n)

≤ |T3| + C�x
1
2 ‖V�x‖L∞(�×[0,T ])‖ϕ‖H1(�×(0,T ))

⎛

⎝
∑

n,K

∫

I n

∫

K

|BResn,K |2dxdt

⎞

⎠

1
2

+C�xα‖ϕ‖L∞(�×[0,T ])

⎛

⎜⎝�x
1
2 −α

∑

n

∑

K

BResn,K

⎛

⎝
∫

I n

∫

K

‖∇xt V�x‖2dxdt

⎞

⎠

1
2
⎞

⎟⎠

→ 0, as �x → 0. (4.30)

Next, we consider the streamline diffusion quasilinear form (2.8) and use the stability
of the projection operator (4.5) and the weak BV estimate (3.3) to obtain,

∣∣BSD(V�x , (V�xϕ − ��x (V�xϕ))
∣∣

=
∣∣∣∣∣∣

∑

n

∑

K

∫

I n

∫

K

〈(
U(V�x )(V�xϕ − ��x (V�xϕ))t

+
d∑

k=1

Fk
V(V�x )(V�xϕ − ��x (V�xϕ))xk

)
, DSDRes

〉
dxdt

∣∣∣∣∣

≤ C�x‖V�x‖L∞(�×[0,T ])
∑

n

∑

K

‖∇xt (V�xϕ − ��x (V�xϕ))‖L2(K×I n) Resn,K

≤ C�x‖V�x‖L∞(�×[0,T ])
∑

n

∑

K

‖∇xt V�xϕ‖L2(K×I n) Resn,K
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≤ C�x
1
2 ‖V�x‖L∞(�×[0,T ]‖ϕ‖H1(�×(0,T ))

⎛

⎝�x
∑

n,K

∫

I n

∫

K

‖Res‖2dxdt

⎞

⎠

1
2

+C�xα‖ϕ‖L∞(�×[0,T ]

⎛

⎜⎝�x1−α
∑

n

∑

K

Resn,K

⎛

⎝
∫

I n

∫

K

‖∇xt V�x‖2dxdt

⎞

⎠

1
2
⎞

⎟⎠

→ 0, as �x → 0. (4.31)

Given the orthogonality of the projection operator � (4.5) and the definition of the
shock capturing operator, it is easy to see that,

BSC (V�x , (V�xϕ − ��x (V�xϕ))) ≡ 0. (4.32)

The claim (4.26) is proved by combining (4.30), (4.31) and (4.32).
Using (4.18), (4.26) and the definition of the scheme (2.3), we obtain,

T∫

0

∫

�

⎛

⎝〈S,μx,t 〉ϕt +
d∑

k=1

〈Qk , μx,t 〉ϕxk

⎞

⎠ dxdt ≥ − lim
�x→0

B
(

V�x , V�x ϕ
)

≥ − lim
�x→0

B
(

V�x , (V�x ϕ − ��x (V�x ϕ))
)

− lim
�x→0

B
(

V�x , ��x (V�x ϕ)
)

︸ ︷︷ ︸
=0

≥ 0. (4.33)

This proves (1.7). ��
Remark 4.3 The main assumption in the convergence to entropy measure valued solu-
tions is the uniform L∞ bound (4.3). This is assumption is true for scalar conservation
laws and directly follows from the entropy bound (3.2) by choosing the entropy:

S(U ) = − log(b − U ) − log(U − a). (4.34)

provided that the initial data U0(x) for the scalar conservation law U = U in (1.1)
satisfy the bound,

a < U0(x) < b, ∀x ∈ �,

for constants a, b ∈ R. See [11] for a proof of how control on the above entropy
implies an L∞ bound on the approximate solutions.

However, for systems of conservation laws, it is still an open problem to prove
L∞ bounds, even at the level of the continuous problem. This bound does exist for
some special systems [7] which possess invariant regions. The uniform L∞ bound
assumption is reasonable as we are interested in characterizing the consistency of the
scheme (2.3).
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Remark 4.4 Another assumption is the choice of the scaling α > 0 in the shock cap-
turing operator (2.11b). Note that this assumption is only required in controlling the
projection error (4.26) in the proof of entropy consistency. Some numerical exper-
iments have revealed that a non-zero but small value of α might result in a lower
convergence rate, even for linear problems, see [16] for examples.

4.1 Convergence for scalar conservation laws

A slightly modified version of the shock capturing streamline diffusion DG scheme
(2.3) converges to the entropy solutions of scalar conservation laws. The main modifi-
cation lies in the choice of the entropy S with respect to which the entropy variables V
and the scheme (2.3) is defined. As scalar conservation laws possess infinitely many
entropies, we choose the standard quadratic entropy S(U ) = 1

2U 2 and the entropy
variables V = U in (2.3). Furthermore, the entropy conservative flux F

k,∗ in (2.4) is
replaced by the arithmetic average:

F
k,∗(a, b) = Fk(a) + Fk(b)

2
, (4.35)

and the numerical diffusion operator in (2.7) is taken to be the numerical viscosity
corresponding to the Godunov scheme [28]. With these modifications, we have the
following convergence theorem in the scalar case,

Theorem 4.5 Assume that the initial data U0(x) for the scalar conservation law
U = U in (1.1) satisfy the bound,

a < U0(x) < b, ∀x ∈ �,

for constants a, b ∈ R. Let U�x be the approximate solutions generated by the numer-
ical scheme (2.3) with numerical flux (4.35) and numerical diffusion operator corre-
sponding to the Godunov scheme, then the approximate solutions converge to the
entropy solution of the underlying scalar conservation law, i.e, (1.1) with m = 1.

The proof of the entropy bound (3.2) for any entropy is a straightforward conse-
quence of the proof of theorem 3.1. The argument of Tadmor [28] can be used of show
that the scheme is consistent with any entropy as the numerical diffusion operator is
the diffusion of the Godunov scheme. The L∞ bound follows from the special choice
of entropy (4.34). Following [3,7,19], convergence is a consequence of the following
three steps,

1. Convergence to measure valued solutions; follows directly from Theorem 4.1.
2. Consistency with entropy conditions: straightforward modification of Theorem 4.2

to the scalar case, along with the choice of the Godunov flux leading to consistency
with any convex entropy function.

3. Consistency with initial data: follows as in Sect. 5 of [19].

Given the above steps, the reduction theorem of [7] shows that the approximate solu-
tions converge to the entropy solution of the underlying scalar conservation law.
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Remark 4.6 The proof of convergence in the scalar case is essentially the same as
that presented in [19]. The only difference lies in the choice of the shock capturing

operator (2.11a). In [19], the authors require a lower bound on DSC
n,K in terms of �x

3
2

(see Eq. (2.14) of [19]) which will reduce the convergence rate for smooth problems.
We do not require such a lower bound.

4.2 Convergence for linear symmetrizable systems

Consider the linear symmetrizable system (4.1) and complete the scheme (2.3) with
the entropy conservative flux:

F
k,∗(a, b) = 1

2

(
Ak(a + b)

)
, (4.36)

Following [11], we see that the above flux satisfies (2.6) for the above entropy formu-
lation (4.2). Observe that although the system (4.1) is linear, the streamline diffusion-
shock capturing DG scheme (2.3) approximating it is nonlinear on account of the
nonlinear shock capturing term (2.11a, 2.11b, 2.11c, 2.11d).

We have the following stability and convergence theorem for the scheme (2.3) with
flux (4.36) approximating the linear symmetrizable system (4.1).

Theorem 4.7 Consider the linear symmetrizable system (4.1) with symmetrizer B. Let
U�x = U(V�x ) be the approximate solutions generated by the streamline diffusion-
shock capturing DG scheme (2.3) with numerical flux (2.6). Then, the approximate
solutions satisfy the following energy bounds,

‖U�x (., tn−)‖L2(�) ≤ C‖U�x (, .t0−)‖L2(�), (4.37)

for all discrete time levels tn.
Furthermore, the approximate solutions U�x ⇀ U in L2(� × [0, T ]) and U is the

unique weak solution of the system (4.1).

The proof is just a repetition of Theorem 4.1, replacing the L∞ bound with the L2

bound at appropriate places and adding consistency with the initial data.

5 Details of implementation

5.1 The mesh and mesh generation

In one space dimensions we have (so far) only used regular meshes. In two spatial
dimensions we have used the distmesh mesh generator [24], which returns a Delauney
triangulation of the domain � based on a signed distance function.

As the DG method is fully implicit there is no C F L-like condition that needs
to be satisfied. Nevertheless for accuracy reasons we use the following condition to
determine the time step size:
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�tn+1 ≤ CC F L min
K∈T ,x∈K

|K |
�xK

λmax (U�x (x, tn))
, (5.1)

where λmax (U) = maxν λmax (U; ν) is the maximal wave speed in all directions and
the constant CC F L is typically chosen to be 1/2.

5.2 Choice of basis functions

The approximate solution V�x is in Vp. For the computation we express it as a linear
combination of basis functions:

V�x =
∑

K ,k,i,n

v̂n
K kiφ

n
K ki , (5.2)

where 0 ≤ n ≤ N − 1, K ∈ T , 1 ≤ k ≤ m and 1 ≤ i ≤ n f and the coefficients v̂n
K ki

are the degrees of freedom. The indices indicate the support of the basis functions:
We choose the basis functions φn

K ki such that they are nonzero only in one space-time
element: φn

K ki is nonzero in K × I n . Additionally, only one component is nonzero—
namely the k-th component for φn

K ki —and we use the same scalar basis functions φn
K i

for all the components, i.e.

(
φn

K ki

)
l = δklφ

n
K i , 1 ≤ l ≤ m. (5.3)

The scalar basis functions have to span Pp(K × I n). We use monomials, except that
they are shifted and scaled (for simplicity we consider here the two dimensional case):

φn
K i |K×I n =

(
t − tn+1

�tn

)pt,i (
x − x̄K

�x

)px,i (
y − ȳK

�x

)py,i

(5.4)

where (x̄K , ȳK ) is the centroid of cell K and pt,i , px,i , py,i is the polynomial degree
of the i-th scalar basis function in t, x , resp. y-direction. We use a maximal degree of
p, hence:

pt,i + px,i + py,i ≤ p. (5.5)

In general there are n f = (1+d+p
p

)
scalar basis functions. This leads to a total number

of degrees of freedom of Nc Nmn f = Nc Nm
(1+d+p

p

)
, where Nc = |T | is the number

of cells.

5.3 Quadrature rules

There are three types of integration that have to be performed, compare (2.4), (2.8),
(2.11a, 2.11b, 2.11c, 2.11d): integration over the whole space-time element K × I n ,
integration over the spatial elements K , and integration over the edges of the elements
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and the time ∂K K ′ × I n . For the tensor product domains K × I n and ∂K K ′ × I n we
use tensor product integration formulas. Hence, we only need to further specify the
quadrature rules for K , ∂K K ′ and I n . For the integration over triangles K , Dunavant
quadrature rules of order 2p + 2 are applied [8], while for the integration over ∂K K ′
and I n one dimensional Gaussian quadrature rules of order 2p + 2 are used.

5.4 Nonlinear and linear solvers

Because the form B is linear in the test function, fulfilling the variational form (2.3)
for all test functions W�x ∈ Vp is equivalent to requiring that (2.3) is satisfied for
all basis functions φn

K ki . Hence, we define Fn
K ′l j = B(V�x ,φn

K ′l j ). As we are able to
march in time, due to (2.5), we consider each time step separately. In the n-th timestep
we have to solve the nonlinear system for v̂n

Fn
K ′l j (v̂

n) = 0, K ′ ∈ T , 1 ≤ l ≤ m, 1 ≤ j ≤ n f , (5.6)

where v̂n is the vector of the degrees of freedom for the n-th time slab.
We use a damped Newton method [15] to solve this system, the most important

step is to solve for the Newton correction δv̂n at the current state v̂n :

J n(v̂n)δv̂n = Fn(v̂n), (5.7)

where the Jacobian is given by

J n
K ′l j,K ki = (FK ′l j )v̂n

K ki
, K , K ′ ∈ T , 1 ≤ k, l ≤ m, 1 ≤ i, j ≤ n f (5.8)

Currently the Jacobian is created analytically, which is quite complicated and time
consuming, and a sparse LU factorization is used to solve the linearized system.

5.5 Choice of parameters

There are some parameters that need to be specified in order to complete the method
(2.3). They have some influence on the results, but we have not tried to systematically
study them and optimize them for each problem. Rather, we use problem independent
values. The streamline diffusion form (2.8) involves the coefficient C SD , while the
coefficients C SC , C̄ SC appear in the shock capturing term (2.11a, 2.11b, 2.11c, 2.11d).
We set both coefficients C SD and C SC to 1, while C̄ SC is set to 0. The remaining
parameters of the shock capturing operator are as follows: θ is (d + 1)/2, while α is
set to 0.

6 Numerical experiments

We test the shock capturing streamline diffusion DG scheme (2.3) for systems of
conservation laws, in both one and two space dimensions. We start with a linear
system.
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6.1 Wave equation

6.1.1 Exact form of equations, entropy formulation

The standard wave equation in two space dimensions can be written as,

ht + cux + cvy = 0 (6.1a)

ut + chx = 0 (6.1b)

vt + chy = 0 (6.1c)

Here, h can be considered as a height or pressure variable and u, v are the velocities
in the x- and y-directions respectively. Denoting the vector of conserved variables as
U, we see that the wave equation is already symmetric (i.e, the symmetrizer is the
identity matrix) and the entropy is the energy: S(U) = 1

2 (h2 + u2 + v2).
Therefore, the entropy conservative flux in (2.4) is the average flux of the two

neighboring states. We use the following Rusanov type diffusion operator:

D(a, b; ν) = max {λmax (a; ν), λmax (b; ν)} UV = cID (6.2)
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Fig. 1 Convergence for wave equation for smooth initial data
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6.1.2 One space dimension

6.1.3 Smooth data: convergence rates.

In the first numerical experiment, we consider the wave equation in one space dimen-
sion and set the wave speed to be c = 1. The domain is [−1, 1] with periodic boundary
conditions and the initial data is

h = sin(2πx), u = sin(2πx)/3.

As the initial data is smooth, the resulting solutions are smooth and we can compute
the exact solution explicitly. The convergence rate for different schemes is provided in
Fig. 1. As shown in the figure, we test the scheme (2.3) with different spaces of basis
functions i.e, schemes with piecewise constant, linear, quadratic and cubic functions.
Furthermore, different parts of the quasilinear form in (2.3) are tested. We test with just
the DG form (2.4), with the DG and streamline diffusion form as well as with the full
scheme (2.3). The results in Fig. 1 clearly show that the expected order of convergence
is attained in this numerical experiment for all the choices of test functions as well
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Fig. 2 Convergence for wave equation for discontinuous initial data
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Fig. 3 Wave equation (h only), discontinuous initial data. Left SD + SC, different p, Nc = 80. Right
Different operators, p = 2, Nc = 80

as for all constituent parts of the quasilinear form. The best results in this case are
obtained with the pure DG form (2.4). Adding streamline diffusion (2.8) results in
some smearing and adding the shock capturing form further smears the solution, even
though the design order of accuracy is attained in all cases. The results indicate that
the pure DG scheme will work quite well for smooth solutions.

6.1.4 Discontinuous data

In the next test, we consider the previous configuration with the one dimensional wave
equation, but discontinuous initial data,

h(x, 0) =
{

1.0, if x < 0,

0.0, if x > 0.
u(x, 0) =

{
1
3 , if x < 0,

0.0 if x > 0.

In this case, the solutions are discontinuous. The rate of convergence for different
schemes is shown in Fig. 2. As expected, the design order of accuracy is no longer
achieved and the maximum rate of convergence is approximately 1. However, increas-
ing the polynomial order does consistently result in lower errors for the same number
of cells. Furthermore, time snapshots of the solution with different degrees of poly-
nomial basis functions and with different operators are shown in Fig. 3. The figure
clearly shows that there is considerable improvement in resolution when the poly-
nomial degree is increased from piecewise constants to piecewise linears. There is a
marginal improvement with further increase in the polynomial degree. Furthermore,
the pure DG scheme (2.4) is clearly oscillatory near the discontinuities. The addition
of streamline diffusion (2.8) damps the oscillations to some extent. However, the best
results are obtained with the full scheme (2.3). The shock capturing term is clearly
needed to reduce oscillations considerably. In fact, few visible oscillations remain
when the shock capturing term is introduced.
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Fig. 4 2-D wave equation with discontinuous initial data and Nc = 840. The bottom panel shows cuts in
α-direction through (0, 0)

6.1.5 Two space dimensions

Next we test the wave equations in a two dimensional domain [−1, 1]2 with Dirichlet
boundary conditions and with discontinuous initial data:

h = sgn(sin(2π〈α, x〉)), u = α1sgn(sin(2π〈α, x〉)), v = α2sgn(sin(2π〈α, x〉)),
where α =

(
cos(π/3)

sin(π/3)

)
.

The numerical results with different schemes are provided in Fig. 4. The figure clearly
shows that all the scheme resolve the solution quite well. There is clear gain in accuracy
when piecewise quadratic basis functions are used instead of piecewise linears. As in
the one dimensional tests, the pure DG and the DG-streamline diffusion schemes are
oscillatory near discontinuities. However, these oscillations are significantly reduced
with the addition of the shock capturing term (2.11a, 2.11b, 2.11c, 2.11d).
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6.2 Euler equations

Next, we consider the nonlinear Euler equations of gas dynamics. In two space dimen-
sions, they are of the form,

Ut + F1(u)x + F2(u)y = 0,

U = (ρ, ρu, ρv, ρE),

F1(U) = (ρu, ρu2 + p, ρuv, ρu H)

F2(U) = (ρv, ρuv, ρv2 + p, ρvH) (6.3)

Here, ρ is the density, u, v are the velocity fields and ρE is the total energy. Further-
more, auxillary quantities are the pressure p, sound speed c and the enthalpy H given
by

p = (γ − 1)(ρE − 1

2
ρ(u2 + v2)), c =

√
γ

p

ρ
, H = c2

γ − 1
+ 1

2
(u2 + v2)

and γ is adiabatic exponent, which is set to 1.4 in all experiments.
Furthermore, the specific entropy s = log p − γ log ρ, the total entropy for the

Euler equation is given by,

S = −ρs

γ − 1

6.2.1 Entropy conservative fluxes, numerical diffusion operators

Here, we use the entropy conservative flux for the Euler equations derived in [18], see
also [11].

The numerical diffusion operator is of the Rusanov type:

D(a, b; ν) = max {λmax (a; ν), λmax (b; ν)} UV

(
a + b

2

)

= max
{

c(a) +
∣∣∣u(a)ν1 + v(a)ν2

∣∣∣ , c(b) +
∣∣∣u(b)ν1 + v(b)ν2

∣∣∣
}

UV

(
a + b

2

)

(6.4)

6.2.2 One space dimension

As a first numerical experiment, we consider the Euler equations in one space dimen-
sion on the domain [−5, 5] and consider as initial data,

6.2.3 Sod shock tube

The Sod shock tube is a Riemann problem with left state ρ = 1, u = 0, p = 1 and
right state ρ = 0.125, u = 0, p = 0.1. The results for the density and with piecewise
quadratic basis functions are shown in Fig. 5. The results clearly show that the pure-DG
and the DG and streamline diffusion schemes resolve the exact solution (consisting of
a rarefaction, a contact and a shock) sharply but with oscillations near both the shock
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Fig. 5 Sod shock tube, density, different operators, p = 2, Nc = 80
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Fig. 6 Sod shock tube, density, different operators, p = 2, Nc = 80

wave as well as near the contact discontinuity. The addition of the shock capturing
terms damps these oscillations considerably with some smearing at the shock wave.
However, the contact discontinuity is smeared considerably and the results are quite
unsatisfactory.

6.2.4 Pressure scaling

The above results indicate that we need some artificial compression near contacts.
To this end, we utilize the fact that the pressure does not jump across contact
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Fig. 7 Sod shock tube, density, SD+SC(p), different p, Nc = 80

discontinuities and modify the scaling (2.11b) in the shock capturing operator (2.11a,
2.11b, 2.11c, 2.11d) in the following way:

DSC
n,K =

D p
n,K

(
(�x)1−αC SC Resn,K + �x

1
2 −αC̄ SC BResn,K

)

√√√√∫
I n

∫
K

(
〈V�x

t , UV(Ṽ�x )V�x
t 〉 +

d∑
k=1

〈
V�x

xk , UV(Ṽ�x )V�x
xk

〉)
dxdt + �xθ

,

(6.5)

D p
n,K = �x2

1
�tn

1
|K |

∫
I n

∫
K

√
d∑

k=1
p2

xk xk dxdt

1
�tn

1
|K |

∫
I n

∫
K pdxdt

(6.6)

Hence, jumps in pressure serve as indicators of contact discontinuities and the
shock capturing operator is switched off near the contacts. Note that introduction
of the pressure scaling does not destroy the entropy stability of the scheme as
the pressure term D p

n,K appears as a positive constant. Corresponding results for
the Sod shock tube with the new pressure scaling and with piecewise quadratic
basis functions are shown in Fig. 6. The figure clearly shows that the introduction
of the new pressure scaling has significantly reduced the smearing at the contact
while dampening oscillations near both the shock and the contact. Furthermore, the
results for different polynomial degrees, shown in Fig. 7 demonstrate that there is
a significant gain in accuracy when piecewise linears are used in place of piece-
wise constants. Gains in accuracy with even higher polynomial degrees are more
modest.
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Fig. 8 Lax shock tube, density, Nc = 80

6.2.5 Lax shock tube

Next, we consider the Lax shock tube, which is the Riemann problem with left state
ρ = 0.445, u = 0.698, p = 3.528 and right state ρ = 0.5, u = 0, p = 0.571 on the
domain [−5, 5] with Dirichlet boundary conditions. The results are shown in Fig. 8.
The figure shows that pure DG as well as the streamline diffusion-DG scheme are
very oscillatory in the region between the shock and the contact discontinuity. The
oscillations are decreased significantly when the shock capturing term is added but
this term smears the contact discontinuity considerably. The sharpness at the contact
discontinuity is regained once the pressure scaled shock capturing term is used, albeit
with small oscillations in the intermediate state between the shock and the contact
discontinuity. The behavior of the schemes with increasing polynomial degree in the
basis functions is very similar to the Sod shock tube experiment.

6.3 Two space dimensions

6.3.1 Vortex advection

We consider the advection of an Euler vortex (see [11] for the setup) in the domain
[0, 10]2, with Dirichlet boundary conditions and a vortex centered at xc = 5, yc = 5
with rc = 1 as initial condition:

u = 1 − (y − yc)φ(r), v = 1 + (x − xc)φ(r), θ = 1 − γ − 1

2γ
φ(r)2, s = 0,

where θ = p
ρ
, s = log p − γ log ρ, r = √

(x − xc)2 + (y − yc)2, φ(r)

= εe
α

(
1−

(
r
rc

)2
)

, ε = 5
2π

and α = 12.
The exact solution is explicitly known in this case ([11] and references therein)

and is a vortex propagating along the diagonal. We compute convergence rates

123



Entropy stable space–time DG schemes 147

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

h−1

re
la

tiv
e 

L1 −
er

ro
r

1.0

2.0

3.0

p=0
p=1
p=2

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

h−1

re
la

tiv
e 

L1 −
er

ro
r

1.0

2.0

3.0

p=0
p=1
p=2

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

h−1

re
la

tiv
e 

L1 −
er

ro
r

1.0

2.0

3.0

p=0
p=1
p=2

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

h−1

re
la

tiv
e 

L1 −
er

ro
r

1.0

2.0

3.0

p=0
p=1
p=2

(a) (b)

(c) (d)

Fig. 9 Vortex-Advection, different p, different operators

Fig. 10 Vortex-Advection for the Euler equations, density p = 2, Nc = 828, t = 2

with different schemes and present the results in Fig. 9. The expected conver-
gence rates for the piecewise constant, linear and quadratic basis functions are
obtained. Furthermore, a time snapshot, shown in Fig. 10, demonstrates that the full
scheme (with the pressure scaling) resolves the propagating vortex without excessive
smearing.
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Fig. 11 Radial shock tube for Euler equations, density, p = 1, Nc = 13,440, t = 0.2

6.3.2 Radial shock tube

As a final numerical experiment, we consider the Euler equations in the domain
[−1, 1]2 with Dirichlet boundary conditions. The initial data consists of radial discon-
tinuity at r = √

x2 + y2 = 0.4:
Outside this circle, the states are ρ = 0.125, p = 0.125 and inside the circle,

the states ρ = 1, p = 1. Furthermore, u = 0, v = 0, everywhere in the domain
initially.

The results with the scheme (2.3) are shown in Fig. 11 and demonstrate that the
shock capturing (with pressure scaling) method works very well and the radial discon-
tinuities are resolved sharply. One dimensional slices clearly show that adding shock
capturing damps the oscillations generated with a pure DG or DG-streamline diffusion
scheme.
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7 Conclusion

In this paper, we consider systems of conservation laws (1.1) in several space dimen-
sions and propose a streamline diffusion shock capturing spacetime DG method (2.3)
to approximate them. The method is based on the following ingredients,

(i) The entropy variables (rather than the conservative variables) serve as the degrees
of freedom.

(ii) The (spatial) numerical flux function is identical to the entropy stable fluxes
(entropy conservative fluxes + numerical diffusion operators) proposed recently
in the context of high-resolution finite volume schemes, [11] and references
therein. In fact, these DG schemes can be thought as (implicit in time) high-
order generalizations of the entropy stable schemes introduced by Tadmor in
[27,28].

(iii) The streamline diffusion (2.8) and shock capturing operators (2.11a, 2.11b, 2.11c,
2.11d) are residual based and are needed to stabilize oscillations near shocks. In
particular, a novel pressure scaling is introduced in order to modulate numerical
diffusion near contact discontinuities.

We are able to show that the spacetime DG method satisfies the following (rigorous)
properties:

1. The fully discrete version of the method (with formal arbitrary order of accuracy)
is shown to be entropy stable for a general system of conservation laws.

2. We show that the spacetime DG method converges to an entropy measure valued
solution of the underlying system of conservation laws. This result holds under
the assumption that the approximate solutions are uniformly bounded in L∞.

3. The approximate solutions converge to the entropy solutions for scalar conserva-
tion laws and for linear symmetrizable systems.

Given the difficulties associated with showing convergence to weak solutions for
nonlinear systems, our results on convergence to measure valued solutions are a crucial
indication of the consistency of the proposed schemes. To the best of our knowledge,
these are the first results concerning convergence to measure valued solutions for
general nonlinear systems of conservation laws. Furthermore, we present extensive
numerical experiments that indicate the desired order of accuracy is attained for smooth
solutions. The schemes are shown to compute discontinuities like shocks and contact
discontinuities robustly.

It is essential to view the results presented in this paper in the context of previ-
ous results. Streamline diffusion shock capturing DG methods were proposed about
twenty years back in a number of papers, see [1,17,19–21] and references therein.
We would like to compare our results with two of the papers that we believe are the
most representative of the above list in the present context. First, [19] also considered
streamline diffusion, shock capturing DG methods and we have used some of their
results here. However, the presentation and analysis in [19] was mostly restricted to the
scalar case. Here, we focus on nonlinear systems and view the current paper as general-
izations of the results of [19] to systems of conservation laws. The next representative
papers that we compare with are [1,2]. In these papers, the author considers systems
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of conservation laws and presents a streamline diffusion shock capturing spacetime
DG method to approximate them. The schemes of [1] are very similar to our proposed
scheme (2.3). However, there are important differences. Firstly, the numerical flux
functions proposed by us are based on the entropy stable schemes of Tadmor [27] in
contrast to the system E-schemes employed by Barth [2]. Our DG scheme is thus a
natural extension of entropy stable finite volume schemes to unstructured meshes and
to arbitrarily high order of accuracy. Secondly, we introduce a pressure scaling in the
shock capturing operator that is necessary to resolve contact discontinuities sharply.
Furthermore, we go beyond the entropy stability analysis presented in [2] to prove that
the streamline diffusion shock-capturing DG method converges to a entropy measure
valued solution of the underlying conservation law. Thus, our results can be viewed
as providing more rigorous analysis for the schemes presented in [1,2].

The current paper also poses interesting open questions. Our numerical experi-
ments show that although the scheme (2.3) contains several free parameters, the results
were not very sensitive to the choice of most of these parameters. The only excep-
tion was the parameter α in the shock capturing term (2.11b). As mentioned before,
we observed a loss of accuracy when non-zero values of α were considered. The
parameter α is only required for theoretical purposes, in the analysis of the entropy
consistency (Theorem 4.2). We will discuss the role of α in a forthcoming paper
[16] and show convergence to entropy solutions (in the scalar case) even when we
set α = 0.

At the level of computations, the most important issue is the efficient solution of the
nonlinear system (5.6) at every time step. In the current paper, we employ a damped
Newton method with a direct solver for the corresponding linear systems. This method
is very expensive on account of the cost of forming the Jacobian. We plan to use a
Newton–Krylov method to speed up computations. However, an efficient Newton–
Krylov solver requires efficient preconditioners for the Krylov sub-steps. The design
of such preconditioners is considered in a forthcoming paper.

Acknowledgments SM thanks Dr. T. J. Barth, NASA, Ames, USA for interesting discussions on space-
time DG methods and for providing the particular forms of the shock capturing operators used by him.
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